2,131 research outputs found

    Early Excitation of Spin-Orbit Misalignments in Close-in Planetary Systems

    Get PDF
    Continued observational characterization of transiting planets that reside in close proximity to their host stars has shown that a substantial fraction of such objects posses orbits that are inclined with respect to the spin axes of their stars. Mounting evidence for the wide-spread nature of this phenomenon has challenged the conventional notion that large-scale orbital transport occurs during the early epochs of planet formation and is accomplished via planet-disk interactions. However, recent work has shown that the excitation of spin-orbit misalignment between protoplanetary nebulae and their host stars can naturally arise from gravitational perturbations in multi-stellar systems as well as magnetic disk-star coupling. In this work, we examine these processes in tandem. We begin with a thorough exploration of the gravitationally-facilitated acquisition of spin-orbit misalignment and analytically show that the entire possible range of misalignments can be trivially reproduced. Moreover, we demonstrate that the observable spin-orbit misalignment only depends on the primordial disk-binary orbit inclination. Subsequently, we augment our treatment by accounting for magnetic torques and show that more exotic dynamical evolution is possible, provided favorable conditions for magnetic tilting. Cumulatively, our results suggest that observed spin-orbit misalignments are fully consistent with disk-driven migration as a dominant mechanism for the origin of close-in planets.Comment: 12 pages, 6 pdf figures, Accepted to The Astrophysical Journal (2014

    A Secular Resonant Origin for the Loneliness of Hot Jupiters

    Get PDF
    Despite decades of inquiry, the origin of giant planets residing within a few tenths of an astronomical unit from their host stars remains unclear. Traditionally, these objects are thought to have formed further out before subsequently migrating inwards. However, the necessity of migration has been recently called into question with the emergence of in-situ formation models of close-in giant planets. Observational characterization of the transiting sub-sample of close-in giants has revealed that "warm" Jupiters, possessing orbital periods longer than roughly 10 days more often possess close-in, co-transiting planetary companions than shorter period "hot" Jupiters, that are usually lonely. This finding has previously been interpreted as evidence that smooth, early migration or in situ formation gave rise to warm Jupiter-hosting systems, whereas more violent, post-disk migration pathways sculpted hot Jupiter-hosting systems. In this work, we demonstrate that both classes of planet may arise via early migration or in-situ conglomeration, but that the enhanced loneliness of hot Jupiters arises due to a secular resonant interaction with the stellar quadrupole moment. Such an interaction tilts the orbits of exterior, lower mass planets, removing them from transit surveys where the hot Jupiter is detected. Warm Jupiter-hosting systems, in contrast, retain their coplanarity due to the weaker influence of the host star's quadrupolar potential relative to planet-disk interactions. In this way, hot Jupiters and warm Jupiters are placed within a unified theoretical framework that may be readily validated or falsified using data from upcoming missions such as TESS.Comment: 9 pages, 4 figures. Accepted for publication in the Astronomical Journa

    Resonant Removal of Exomoons During Planetary Migration

    Get PDF
    Jupiter and Saturn play host to an impressive array of satellites, making it reasonable to suspect that similar systems of moons might exist around giant extrasolar planets. Furthermore, a significant population of such planets is known to reside at distances of several Astronomical Units (AU), leading to speculation that some moons thereof might support liquid water on their surfaces. However, giant planets are thought to undergo inward migration within their natal protoplanetary disks, suggesting that gas giants currently occupying their host star's habitable zone formed further out. Here we show that when a moon-hosting planet undergoes inward migration, dynamical interactions may naturally destroy the moon through capture into a so-called "evection resonance." Within this resonance, the lunar orbit's eccentricity grows until the moon eventually collides with the planet. Our work suggests that moons orbiting within about 10 planetary radii are susceptible to this mechanism, with the exact number dependent upon the planetary mass, oblateness and physical size. Whether moons survive or not is critically related to where the planet began its inward migration as well as the character of inter-lunar perturbations. For example, a Jupiter-like planet currently residing at 1AU could lose moons if it formed beyond 5AU. Cumulatively, we suggest that an observational census of exomoons could potentially inform us on the extent of inward planetary migration, for which no reliable observational proxy currently exists.Comment: 6 Figures, Accepted for Publication in The Astrophysical Journa

    An orbital window into the ancient Sun's mass

    Get PDF
    Models of the Sun's long-term evolution suggest that its luminosity was substantially reduced 2-4 billion years ago, which is inconsistent with substantial evidence for warm and wet conditions in the geological records of both ancient Earth and Mars. Typical solutions to this so-called "faint young Sun paradox" consider changes in the atmospheric composition of Earth and Mars, and while attractive, geological verification of these ideas is generally lacking-particularly for Mars. One possible underexplored solution to the faint young Sun paradox is that the Sun has simply lost a few percent of its mass during its lifetime. If correct, this would slow, or potentially even offset the increase in luminosity expected from a constant-mass model. However, this hypothesis is challenging to test. Here, we propose a novel observational proxy of the Sun's ancient mass that may be readily measured from accumulation patterns in sedimentary rocks on Earth and Mars. We show that the orbital parameters of the Solar system planets undergo quasi-cyclic oscillations at a frequency, given by secular mode g_2-g_5, that scales approximately linearly with the Sun's mass. Thus by examining the cadence of sediment accumulation in ancient basins, it is possible distinguish between the cases of a constant mass Sun and a more massive ancient Sun to a precision of greater than about 1 per cent. This approach provides an avenue toward verification, or of falsification, of the massive early Sun hypothesis.Comment: 7 pages, 4 Figures. Accepted to The Astrophysical Journal Letter

    The resilience of Kepler systems to stellar obliquity

    Get PDF
    The Kepler mission and its successor K2 have brought forth a cascade of transiting planets. Many of these planetary systems exhibit multiple members, but a large fraction possess only a single transiting example. This overabundance of singles has lead to the suggestion that up to half of Kepler systems might possess significant mutual inclinations between orbits, reducing the transiting number (the so-called "Kepler Dichotomy"). In a recent paper, Spalding & Batygin (2016) demonstrated that the quadrupole moment arising from a young, oblate star is capable of misaligning the constituent orbits of a close-in planetary system enough to reduce their transit number, provided that the stellar spin axis is sufficiently misaligned with respect to the planetary orbital plane. Moreover, tightly packed planetary systems were shown to be susceptible to becoming destabilized during this process. Here, we investigate the ubiquity of the stellar obliquity-driven instability within systems with a range of multiplicities. We find that most planetary systems analysed, including those possessing only 2 planets, underwent instability for stellar spin periods below ~3 days and stellar tilts of order 30 degrees. Moreover, we are able to place upper limits on the stellar obliquity in systems such as K2-38 (obliquity <20 degrees), where other methods of measuring spin-orbit misalignment are not currently available. Given the known parameters of T-Tauri stars, we predict that up to 1/2 of super-Earth mass systems may encounter the instability, in general agreement with the fraction typically proposed to explain the observed abundance of single-transiting systems.Comment: 13 pages, 8 figures, accepted to The Astronomical Journa

    Resonant Activation of Population Extinctions

    Get PDF
    Understanding the mechanisms governing population extinctions is of key importance to many problems in ecology and evolution. Stochastic factors are known to play a central role in extinction, but the interactions between a population's demographic stochasticity and environmental noise remain poorly understood. Here, we model environmental forcing as a stochastic fluctuation between two states, one with a higher death rate than the other. We find that in general there exists a rate of fluctuations that minimizes the mean time to extinction, a phenomenon previously dubbed "resonant activation." We develop a heuristic description of the phenomenon, together with a criterion for the existence of resonant activation. Specifically the minimum extinction time arises as a result of the system approaching a scenario wherein the severity of rare events is balanced by the time interval between them. We discuss our findings within the context of more general forms of environmental noise, and suggest potential applications to evolutionary models.Comment: 12 pages, 7 Figures, Accepted for publication in Physical Review

    Magnetic Origins of the Stellar Mass-Obliquity Correlation in Planetary Systems

    Get PDF
    Detailed observational characterization of transiting exoplanet systems has revealed that the spin-axes of massive M ≳ 1.2M_☉ stars often exhibit substantial misalignments with respect to the orbits of the planets they host. Conversely, lower-mass stars tend to only have limited obliquities. A similar trend has recently emerged within the observational data set of young stars' magnetic field strengths: massive T-Tauri stars tend to have dipole fields that are ~10 times weaker than their less-massive counterparts. Here we show that the associated dependence of magnetic star–disk torques upon stellar mass naturally explains the observed spin–orbit misalignment trend, provided that misalignments are obtained within the disk-hosting phase. Magnetic torques act to realign the stellar spin-axes of lower-mass stars with the disk plane on a timescale significantly shorter than the typical disk lifetime, whereas the same effect operates on a much longer timescale for massive stars. Cumulatively, our results point to a primordial excitation of extrasolar spin–orbit misalignment, signalling consistency with disk-driven migration as the dominant transport mechanism for short-period planets. Furthermore, we predict that spin–orbit misalignments in systems where close-in planets show signatures of dynamical, post-nebular emplacement will not follow the observed correlation with stellar mass
    • …
    corecore